

AN143

Rev 1.1 | Page 1/40

www.cmostek.com

Summary

This article describes the CMT2300A FIFO, packet format and the working principle of the interrupt

system. When the article introduces the contents of the configuration register, it will correspond to the

parameters that can be entered on the RFPDK to facilitate the user configuration.

The part numbers covered by this document are as shown below.

Table1. Part Numbers Covered by This Document

Part No. Frequency Modem Function Configuration Package

CMT2300A 127 - 1020MHz (G)FSK/OOK Transceiver Register QFN16

Before reading this document, it is recommended that reading the《AN142 - CMT2300A Quick Start

Guideline》，that will be make it easy to understand.

AN143
CMT2300A FIFO and Packet Format Usage Guideline

Copyright © By CMOSTEK

AN143

Rev 1.1 | Page 2/40

www.cmostek.com

Table of contents

Summary .. 1

1. FIFO Working Principle ... 3

1.1 FIFO Related Register .. 3

1.2 FIFO Working Mode .. 5

1.3 FIFO Interrupt Timing ... 7

1.4 FIFO Application Scenes ... 7

1.4.1 Application scene 1: Receive the data at RX ... 8

1.4.2 Application scene 2: Fill in the data beforehand and enter the TX transmitting 8

1.4.3 Application scene 3: After entering the TX, fill in the data while transmitting them. 9

1.4.4 Application scene 4: Send repeatedly the same or same set of packets each time 9

1.4.5 Application scene 5: A packet is sent several times apart .. 9

2. Packet Format Introduction ... 10

2.1 Data Mode Configuration ... 10

2.2 Preamble Configuration .. 11

2.3 Sync Word Configuration .. 12

2.4 Packet Overall Configuration .. 15

2.5 Node ID Configuration .. 17

2.6 FEC Configuration ... 21

2.7 CRC Configuration ... 22

2.8 Codec Configuration ... 24

2.9 Tx Packet Specific Configuration ... 26

2.10 Direct Tx Mode ... 27

3. GPIO and Interrupt... 28

3.1 GPIO Configuration ... 28

3.2 Interrupt Configuration and Mapping .. 29

3.3 Antenna TX / RX Switching Control .. 36

4. Document Modification Record ... 37

5. Contact Information ... 40

AN143

Rev 1.1 | Page 3/40

www.cmostek.com

1. FIFO Working Principle

1.1 FIFO Related Register

The corresponding RFPDK interface and parameters are as below:

Figure 1. FIFO RFPDK Interface

Table 2. FIFO Related Parameter

Register Bit RFPDK Parameter Register Bit

Data Mode DATA_MODE <1:0>

RFPDK does not display the parameter and it is flexibly configured

by the user in the application.

FIFO_TH <6:0>

The parameter is automatically calculated based on the TX packet

number. When the TX packet number is greater than 1, the

parameter is set to 1.

FIFO_AUTO_RES_EN

The contents and explanations of the register can be seen in the following table.

Table 3. Register Located in the Configuration Bank:

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT1

(0x38)
1:0 RW DATA_MODE <1:0>

Data processing mode:

0：Direct Mode（Default）

1：NA

2：Packet Mode

3：NA

CUS_PKT29

(0x54)

7 RW FIFO_AUTO_RES_EN

Each time it sends a package, it automatically

restores TX FIFO. If you enter TX each time to

send repeatedly more than 1 packet

(TX_PKT_NUM> 0), this bit must be set to 1.

6:0 RW FIFO_TH <6:0>

FIFO threshold, the unit is byte. For RX, when

the unread data exceeds this threshold, the

RX_FIFO_TH_FLG will be set to 1. For TX,

when no sending data is less than this

threshold, TX_FIFO_TH_FLG will be set to 0.

AN143

Rev 1.1 | Page 4/40

www.cmostek.com

Register

Name
Bits R/W Bit Name Function Description

When FIFO_MERGE_EN = 0, the effective

range is 1 to 31.

When FIFO_MERGE_EN = 1, the effective

range is 1 to 63.

Table 4. Register Located in the Control Bank 1

Register

Name

Bits R/W Bit Name Function Description

CUS_FIFO_CTL

(0x69)

4 RW FIFO_AUTO_CLR_DIS

0：Automatically clear RX FIFO before entering

RX.

1：No auto clear.

3 RW FIFO_TX_RD_EN

0：TX FIFO can only be written by SPI.

1：RX FIFO can be read by SPI. This bit is valid

only for TX FIFO, Except that it is available for

user testing, the bit should be set to 0 at the rest.

2 RW FIFO_RX_TX_SEL

As a 64-byte FIFO, it can be used.

0：Used for RX FIFO;

1：Used for TX FIFO。

1 RW FIFO_MERGE_EN
0：The FIFO is divided into 2 separate 32-byte;

1：Merge into one 64-byte FIFO.

0 RW SPI_FIFO_RD_WR_SEL

0：The operation of SPI is to read FIFO;

1：The operation of SPI is to write FIFO. You

must set it up before you visit FIFO.

Table 5. Register Located in the Control Bank 2

Register Name Bits R/W Bit Name Function Description

CUS_FIFO_CLR

(0x6C)

2 W FIFO_RESTORE

Users restore TX FIFO manually. Restore

means resetting the read pointer. Keep the

write pointer unchanged, so that TX FIFO is

returned to unread state, and you can

repeatedly send the data filled before.

1 W FIFO_CLR_RX

0：Invalid，

1：Clear RX FIFO。

After the user has set this bit to 1, it does not

need to be set to 0 again, and this bit is

automatically set back to 0 inside.

0 W FIFO_CLR_TX

0：：Invalid，

1：Clear TX FIFO

After the user has set this bit to 1, it does not

need to be set to 0 again, and this bit is

AN143

Rev 1.1 | Page 5/40

www.cmostek.com

automatically set back to 0 inside.

CUS_FIFO_FLAG

(0x6E)

6 R RX_FIFO_FULL_FLG

Indicates the interrupt flag bit that RX FIFO is

full.

0：Invalid

1：Valid

5 R RX_FIFO_NMTY_FLG

Indicates the interrupt that the unread

contents of RX FIFO exceed the FIFO TH.

0：Invalid

1：Valid

4 R RX_FIFO_TH_FLG

Indicates the interrupt that RX FIFO is filled.

0：Invalid

1：Valid

3 R RX_FIFO_OVF_FLG

Indicates the interrupt that RX FIFO

overflows.

0：Invalid

1：Valid

2 R TX_FIFO_FULL_FLG

Indicates the interrupt that TX FIFO is full.

0：Invalid

1：Valid

1 R TX_FIFO_NMTY_FLG

Indicates the interrupt that the unread

contents of TX FIFO exceed the FIFO TH.

0：Invalid

1：Valid

0 R TX_FIFO_TH_FLG

Indicates the interrupt that TX FIFO is filled.

0：Invalid

1：Valid

Note：

The polarity of these interrupt flag bits is controlled by the INT_POLAR. That is, when INT_POLAR = 1,

they are all 0 valid and 1 invalid.

In these registers, some bits that are not associated with the FIFO are ignored here and are not

introduced.

1.2 FIFO Working Mode

CMT2300A provides two separated 32-byte FIFO by default. They are used for RX and TX respectively,

both are separated each other. Users can also set FIFO_MARGE_EN to 1, and then the two FIFO are

merged into a 64-byte FIFO. It can be used both under TX and RX. By configuring the FIFO_RX_TX_SEL to

indicate whether it is currently used as TX or RX.

In general, we would suggest that the FIFO working mode is pre configured in the STBY state, and then

starting the work of TX/RX. As long as the registers locate in the configuration bank and the control bank 1,

the contents can be saved in the SLEEP state. Therefore, unless you change your working mode, configuring

once is enough.

AN143

Rev 1.1 | Page 6/40

www.cmostek.com

Separate FIFO pre configuration

1. Set DATA_MODE <1:0> to 2 and set the data processing mode to Packet mode.

2. Set FIFO_MERGE_EN to 0.

3. Select the operation to be performed afterwards:

If you want to go to RX:

a) Configure SPI_FIFO_RD_WR_SEL to 0 (SPI read FIFO mode);

b) If the user wants RX FIFO to be automatically cleared every time he enters the RX, the

FIFO_AUTO_CLR_DIS is set to 0, otherwise it is set to 1, and then manually cleared.

If you want to go to TX:

a) Configure SPI_FIFO_RD_WR_SEL to 1 (SPI write FIFO mode)

Merged FIFO pre configuration

1. Set DATA_MODE <1:0> to 2 and set the data processing mode to Packet mode.

2. Set FIFO_MERGE_EN to 1.

3. Select the operation to be performed afterwards:

If you want to go to RX:

a) Set FIFO_RX_TX_SEL to 0 (RX mode);

b) Configure SPI_FIFO_RD_WR_SEL to 0 (SPI read FIFO mode);

c) If the user wants RX FIFO to be automatically cleared every time he enters the RX, the

FIFO_AUTO_CLR_DIS is set to 0, otherwise it is set to 1, and then manually cleared before starting.

If you want to go to TX:

a) Set FIFO_RX_TX_SEL to 1 (TX mode);

b) Configure SPI_FIFO_RD_WR_SEL to 1 (SPI write FIFO mode)..

c) Clear manually before starting.

When FIFO is merged, there is only one FIFO inside the chip. Because RX/TX is half duplex, one FIFO is

enough. When FIFO is divided into two, they are independent of each other, and without interference, some

special functions can be realized. For example, if the transmitting data is the same every time, and the RX

FIFO can save the contents under SLEEP, then the TX FIFO will only need to be filled once to save time and

power. Another example is that the RX FIFO is written continuously in the RX state, and the user can use the

received time to fill the data to be transmitted next time into the TX FIFO in parallel. This will not disturb the

work of RX FIFO, but also save time. And also this will not leave the special time to fill in the TX FIFO, but also

save the power.

It is important to note that you must clear manually after you switch between TX FIFO and RX FIFO each

time, otherwise it will not work properly.

In order to apply to the FIFO merging and not merging the two cases, FIFO read-write enable operations

configure FIFO_RX_TX_SEL and SPI_FIFO_RD_WR_SEL according to the merging usage requirements.

AN143

Rev 1.1 | Page 7/40

www.cmostek.com

 Cmt2300_GoStby();

 Cmt2300_ClearInterruptFlags();

/* Must clear FIFO after enable SPI to read or write the FIFO */

 Cmt2300_EnableWriteFifo();

 Cmt2300_ClearFifo();

// When merged FIFO is used, additional delay is required when the sending byte is too long.

 /* The length need be smaller than 32 */

 Cmt2300_WriteFifo(g_pTxBuffer, g_nTxLength);

FIFO read-write operation code examples see Appendix 1.

1.3 FIFO Interrupt Timing

Here, we first give the interrupt timing diagram of RX FIFO and TX FIFO. Users can refer to them to

understand easily.

Figure2. CMT2300A RX FIFO Interrupt Timing Diagram

Figure3. CMT2300A TX FIFO Interrupt Timing Diagram

1.4 FIFO Application Scenes

When the FIFO is configured, you can start using it. Here are some classic application scenes. To

complete the entire process of TX and RX, you also need to configure and control other things. These are

introduced later. Here we will only introduce the contents related to FIFO.

10 32 54 76 98 1110 1312 1514 1716 1918 2120 2322 2524 2726 2928 3130EMPTY FULL

RX_FIFO_NMTY

RX_FIFO_TH

RX_FIFO_FULL

Sync 10 32 54 76 98 1110 1312 1514 1716 1918 2120 2322 2524 2726 2928 3130RX DATA Noise Noise

SYNC_OK

RX FIFO ARRAY

RX_FIFO_OVF

(FIFO_TH = 16)

RX_FIFO_WBYTE

10 32 54 76 98 1110 1312 1514 1716 1918 2120 2322 2524 2726 2928 3130EMPTY FULL

TX_FIFO_NMTY

TX_FIFO_TH

TX_FIFO_FULL

Sync 10 32 54 76 98 1110 1312 1514 1716 1918 2120 2322 2524 2726 2928 3130TX DATA Prefix 0

FIFO ARRAY

(FIFO_TH = 16)

Pream

AN143

Rev 1.1 | Page 8/40

www.cmostek.com

1.4.1 Application scene 1: Receive the data at RX

RX FIFO is used more directly. Clear it when you enter RX every time. Enter RX and fill them if the data is

received (Detect the Sync Word successfully). MCU can achieve the following several operations according to

the interrupt. After you have finished, you cannot use it. Send FIFO_CLR_RX to clear before you receive it

next time.

1. Detect the RX_FIFO_FULL interrupt. Once valid indicates that the FIFO has been filled, you can start

reading. The appropriate packet length is just equal to the FIFO depth. Also, the user does not read the

FIFO until the full packet is received.

2. Detect the RX_FIFO_TH interrupt. Once valid indicates that the FIFO has been filled in the preset data

length, you can start reading. The appropriate packet length is not equal to the FIFO depth. Also, the

user does not read the FIFO until the full packet is received.

3. Detect the RX_FIFO_NMTY interrupt. Once valid, read immediately until the interrupt is invalid. Read

again when the interrupt is valid again. This allows you to read them while you receive them. It is suitable

for the case where the packet length is greater than the FIFO depth and is suitable for the case where

the packet length is less than or equal to the FIFO depth.

4. Detect the X_FIFO_WBYTE interrupt. Read immediately once it is valid. This allows you to achieve the

regular operation to write a byte and then read a byte. The premise is that SPI is faster than receiving the

data.

In addition, you can define how many packets are sent per sending by setting the TX_PKT_NUM <7:0>.

If sending the packet is more than one, the FIFO_AUTO_RES_EN is set to 1. That is, the TX FIFO

automatically clears the read pointer and goes back the unread state after each packet is sent. This allows

you to repeatedly send the same packet. You don't need MCU to fill in the data again. The user can set the

TX_PKT_GAP <7:0> to define the time gap between each packet, the unit is the symbol. After entering the

transmitting state, the transmitter sends N packets according to these configurations. After completing, the

transmitter automatically exits the TX and returns to the specified state. The status after exiting can be

configured by TX_EXIT_STATE <1:0>.

If you want to achieve continuous reception, it is recommended to use the above fourth operation. This

needs SPI to read quickly enough. At least it is 1.5 times faster than the rate that FIFO writes a byte. For

example, if the data rate is 10KHz, the time it takes to receive a byte is about 800 us. The rate SPI reads a

byte is 1.5 times faster than the rate FIFO writes a byte. The most time-consuming is 534us. SPI reads a byte

for 8 SCL clock cycles, but with the added time cost before and after, we can count it according to the 10 SCL

clock cycles, then each cycle is 53.4us, converted to SCL clock frequency is about 18.7 kHz. The rate of SCL

is roughly 2 times the rate of data.

1.4.2 Application scene 2: Fill in the data beforehand and enter the TX transmitting

For many applications, pre fill the data packets to be transmitted into TX FIFO, and then enter the TX

transmitting. The behavior of filling data is suggested to be executed in the STBY state. This scene is suitable

for packet length less than or equal to FIFO depth, and the application time does not need to be very compact.

After the user pre configured, he can write the data directly and judge whether the data has been fully written

by detecting the interrupt of TX_FIFO_NMTY, TX_FIFO_TH or TX_FIFO_FULL. During the debugging stage,

after completing the data, the user can read back the filling data according to the following methods, and

AN143

Rev 1.1 | Page 9/40

www.cmostek.com

confirm whether the filling data is the correct:

1. Set FIFO_TX_RD_EN to 1 and enter the read back mode of TX FIFO.

2. Set SPI_FIFO_RD_WR_SEL to 0 and enter the read FIFO mode of SPI.

3. Read the data and confirm whether it is correct.

4. Set FIFO_TX_RD_EN to 0 and exit the read back mode of TX FIFO.

5. Set SPI_FIFO_RD_WR_SEL to 1 and enter the write FIFO mode of SPI.

6. Set FIFO_CLR_TX to 1 and clear FIFO.

7. Re write the data to be ready for transmitting.

1.4.3 Application scene 3: After entering the TX, fill in the data while transmitting them.

If the user first enters the TX state, but the TX FIFO is empty, the chip will always transmit the prefix. The

content of the prefix is determined by TX_PREFIX_TYPE <1:0>, which can be 0, 1, or preamble. At the time

of transmitting the prefix, the chip will have been waiting for the user to fill FIFO, until the user begin to fill in

the first data byte, the chip will stop transmitting the prefix, and has been according to the rhythm of the data

rate to obtain FIFO data to transmit them until the end. So in this scene, SPI is fast enough, and SCL is at

least 2 times as fast as the data rate. If the speed of SPI writing cannot catch up during the transmitting data,

that is, the FIFO is read out by the transmitter, transmitting will not stop, and will always send 0 until FIFO fill in

the next data. But this is an improper operation, and the user should try to avoid it.

1.4.4 Application scene 4: Send repeatedly the same or same set of packets each time

Since TX FIFO saves the content in the SLEEP state, MCU just needs to fill in the data once if the data

sent each time is the same. After completing the sending each time, enter STBY and set FIFO_RESTORE to

1 (Without setting 0, this bit will be cleared automatically), clear the FIFO read pointer. This means that FIFO

is back in the unread state, and the data is stored in it. Entry TX next time and re send the same content, go

round and begin again. If FIFO_AUTO_RES_EN has been set to 1, you don't have to manually set

FIFO_RESTORE, and next time you go directly to the TX to send them.

1.4.5 Application scene 5: A packet is sent several times apart

TX FIFO not only saves the content in the SLEEP state, but also saves the pointer state. For example,

with the merged FIFO, the size is 64-byte, and the user will send the four packets one after another, each

packet is 16-byte. Then, users can first fill these 4 packets in FIFO in STBY, and make sure that FIFO is full,

then set the data length to 16 (how to set it according to the packet format, the following will introduce.), set

the TX packet number to 1, set the FIFO_AUTO_RES_EN to 0, and then enter the TX. The chip sends the

first 16-byte packet, exit to STBY after completing, and then re-enter the TX, the chip sends the second

packet...... until the fourth sending is completed. In this process, MCU does not need to do anything. It is only

responsible for detecting the interrupt and switching the state.

AN143

Rev 1.1 | Page 10/40

www.cmostek.com

2. Packet Format Introduction

CMT2300A uses the TX and RX unified configuration. It is more typical and more flexible packet format.

The structure diagram is as follows:

Figure 4. Packet Structure Diagram

The packet format contains six optional parts. This structure can meet the demand of most single Field

structures in the market, and is not compatible with multi Field structure.

The configurable content of packet format is centered on “the baseband zone". The following will

combine these registers to explain how to configure each part.

2.1 Data Mode Configuration

Data Mode refers to the external MCU to input the sending data or obtain the received data by which

mode.

The corresponding RFPDK interface and parameters are as below:

Figure 5. Data Mode RFPDK Interface

Table 6. Data Mode Related Parameter

Register Bit RFPDK Parameter Register Bit

Data Mode DATA_MODE <1:0>

Automatically select according to Data Mode. When Data Mode is Direct,

input directly the data from GPIO, and when Data Mode is Packet, obtain the

data from TX FIFO.

TX_DIN_SOURCE

AN143

Rev 1.1 | Page 11/40

www.cmostek.com

Table 7. Register Located in the Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT1

(0x38)
1:0 RW DATA_MODE<1:0>

Select the Tx/Rx data mode：

0：Direct Mode（default）

1：NA

2：Packet Mode

3：NA

CUS_TX1

(0x55)
2 RW TX_DIN_SOURCE

Select the Tx data source location：

0：TX data is obtained from TX FIFO

1：TX data is input directly from the GPIO

The difference between data mode is that:

 Direct –Direct mode. The RX mode only supports the preamble and sync detection. FIFO doesn't work.

RX does not support any packet formats.

 Packet –Packet format mode. It supports all packet format configurations, FIFO works.

2.2 Preamble Configuration

The corresponding RFPDK interface and parameters are as below:

Figure 6. Preamble RFPDK Interface

Table 8. Preamble Related Parameter

Register Bit RFPDK Parameter Register Bit

Preamble Rx Size RX_PREAM_SIZE<4:0>

Preamble Tx Size TX_PREAM_SIZE<15:0>

Preamble Unit PREAM_LENG_UNIT

Preamble Value PREAM_VALUE<7:0>

AN143

Rev 1.1 | Page 12/40

www.cmostek.com

Table9. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT1

(0x38)

7:3 RW RX_PREAM_SIZE<4:0>

RX mode Preamble length，can be

configured to be 0-31 units in length.

0: Indicates not to detect Preamble.

1 Indicates to detect Preamble of 1 unit of

length.

And so on.

2 RW PREAM_LENG_UNIT

The unit of length of Preamble, shared by TX

and RX:

0：The unit is 8bits.

1：The unit is 4 bits.

CUS_PKT2

(0x39)
7:0 RW TX_PREAM_SIZE<7:0>

TX mode Preamble length，can be configured

to be 0-65535 units in length.

0 Indicates not to send Preamble，

1 Indicates to send Preamble of 1 unit of

length.

And so on..

CUS_PKT3

(0x3A)
7:0 RW TX_PREAM_SIZE<15:8>

CUS_PKT4

(0x3B)
7:0 RW PREAM_VALUE<7:0>

Preamble value，shared by TX and RX:

8bit is valid when PREAM_LEN_UNIT =0.

Only <3:0> is valid when

PREAM_LEN_UNIT =1.

For RX, the Preamble detection success will generate PREAM_OK interrupt. In addition, Preamble

detection will continue throughout the receiving phase, and it is recommended that the user only detect the

interrupt when necessary.

2.3 Sync Word Configuration

The corresponding RFPDK interface and parameters are as below:

Figure 7. Sync Word RFPDK Interface

AN143

Rev 1.1 | Page 13/40

www.cmostek.com

Table10. Sync Word Related Parameter

Register Bit RFPDK Parameter Register Bit

Sync Size SYNC_SIZE<2:0>

Sync Value SYNC_VALUE<63:0>

Sync Tolerance SYNC_TOL<2:0>

Sync Manch SYNC_MAN_EN

Table11. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT5

(0x3C)

6:4 RW SYNC_TOL<2:0>

Fault tolerant bits of detecting Sync Word in

RX mode：

0: No permit the error.

1: Permit 1bit received error.

2: Permit 2bits received error.

3: Permit 3bits received error.

4: Permit 4bits received error.

5: Permit 5bits received error.

6: Permit 6bits received error.

7: Permit 7bits received error.

3:1 RW SYNC_SIZE<2:0>

Sync Word length:

0: 1 byte

1: 2 bytes

2: 3 bytes

3: 4 bytes

4: 5 bytes

5: 6 bytes

6: 7 bytes

7: 8 bytes

0 RW SYNC_MAN_EN

Sync Word Manchester codec enable：

0：Disable

1：Enable

CUS_PKT6

(0x3D)
7:0 RW SYNC_VALUE<7:0>

Sync Word value, according to different

SYNC_SIZE settings to fill in different

registers, see the following table.

CUS_PKT7

(0x3E)
7:0 RW SYNC_VALUE<15:8>

CUS_PKT8

(0x3F)
7:0 RW SYNC_VALUE<23:16>

CUS_PKT9

(0x40)
7:0 RW SYNC_VALUE<31:24>

CUS_PKT10

(0x41)
7:0 RW SYNC_VALUE<39:32>

AN143

Rev 1.1 | Page 14/40

www.cmostek.com

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT11

(0x42)
7:0 RW SYNC_VALUE<47:40>

CUS_PKT12

(0x43)
7:0 RW SYNC_VALUE<55:48>

CUS_PKT13

(0x44)
7:0 RW SYNC_VALUE<63:56>

 SYNC_VALUE

SYNC_SIZE <63:56> <55:48> <47:40> <39:32> <31:24> <23:16> <15:8> <7:0>

0 √

1 √ √

2 √ √ √

3 √ √ √ √

4 √ √ √ √ √

5 √ √ √ √ √ √

6 √ √ √ √ √ √ √

7 √ √ √ √ √ √ √ √

The tick in the table indicates the register to be filled in. For example, if SYNC_SIZE is set to 1, the length

is 2 bytes, the synchronous word is 0x5678, then the user will fill the value in the two registers of

SYNC_VALUE<63:56> and SYNC_VALUE<55:48>. The MSB corresponds to the sixty-third bit. The LSB

corresponds to the forty-eighth bit. That is filling 0x56 into SYNC_VALUE<63:56> and filling 0x78 into

SYNC_VALUE<55:48>.

In addition, some applications need to Manchester encode the entire packet, but most applications only

need to encode Payload. So, design a Manchester encoding enable bit alone for Sync Word.

AN143

Rev 1.1 | Page 15/40

www.cmostek.com

2.4 Packet Overall Configuration

The corresponding RFPDK interface and parameters are as below:

Figure 8. Packet RFPDK Interface

Table 12. Packet Related Parameter

Register Bit RFPDK Parameter Register Bit

Packet Type PKT_TYPE

Calculate synthetically according to each parameter. The

specific method is described below.

PAYLOAD_LENG<10:0>

Node-Length Position NODE_LENG_POS_SEL

Payload Bit Order PAYLOAD_BIT_ORDER

No input in RFPDK. You can use it flexibly in applications, The

introduction is below.

AUTO_ACK_EN

AN143

Rev 1.1 | Page 16/40

www.cmostek.com

Table 13. Register Located in Configuration Bank

Register

Name

Bits R/W Bit Name Function Description

CUS_PKT14

(0x45)

6:4 RW PAYLOAD_LENG<10:8>

The <10:8> bit of the 11-bit Payload length.

When PKT_TYPE is set as a fixed length

packet, the configurable content is 0-2047,

referring to 1-2048 bytes.

When PKT_TYPE is set to a variable

packet, only <7:0> is valid, and the

configurable length is 1-256 bytes.

3 RW AUTO_ACK_EN

Automatic packaging the ACK data packets

enable.

0：Disable

1：Enable

2 RW NODE_LENG_POS_SEL

In variable packets, the position relationship

between Node ID and Length Byte

0：Node ID is before length Byte.

1：Node ID is after length Byte.

1 RW PAYLOAD_BIT_ORDER

0: First code and decode each byte MSB of

the payload+CRC.

1: First code and decode each byte LSB of

the payload+CRC

0 RW PKT_TYPE

Packet length type

0：Fixed packet length

1：Variable packet length

CUS_PKT15

(0x46)
7:0 RW PAYLOAD_LENG<7:0>

The <7:0> bit of the 12-bit Payload length.

The explain is as above.。

The following explains in detail the meaning of PAYLOAD_BIT_ORDER.

PAYLOAD_BIT_ORDER = 1 indicates that when sending, each byte itself of Payload and CRC is sent

from LSB to MSB in sequence or Manchester/Whiten encoded. On the other hand, the MSB and LSB

sequence of each byte itself of the decoded Payload and the CRC must be changed when receiving, and then

encode CRC again. If the configuration of RX and TX is the same, the user is unable to see the process. If

users use our product to connect with other people's product, they need to understand the process and

configure it properly.

PAYLOAD_BIT_ORDER = 0 indicates that this operation is not available.

AN143

Rev 1.1 | Page 17/40

www.cmostek.com

Figure 9. PAYLOAD_BIT_ORDER Operation

Explain AUTO_ACK_EN usage in detail below.

CMT2300A's AUTO ACK function does not mean that after receiving a packet, it automatically switches

back to the TX mode and send back the ACK packet. This control mode is not supported within the chip. The

actual usage is that when MCU sets AUTO_ACK_EN to 1, the data packet format is automatically configured

as the ACK packet format within the chip, as follows:

Figure 10. ACK Packet Format

This packet only contains Preamble and Sync ID. Then, the external MCU needs to switch the chip to TX

mode for sending. The sending content is the packet above. After the sending is completed, MCU needs to

set AUTO_ACK_EN to 0 first and then perform other operations.

2.5 Node ID Configuration

The corresponding RFPDK interface and parameters are as below:

Figure 11. Node ID RFPDK Interface

AN143

Rev 1.1 | Page 18/40

www.cmostek.com

Table 14. Node ID Related Parameter

Register Bit RFPDK Parameter Register Bit

Node Id Size NODE_SIZE<1:0>

Node Id Mode NODE_DET_MODE<1:0>

Node Id Value NODE_VALUE<31:0>

Node Id Err Mask NODE_ERR_MASK

Node Id Free NODE_FREE_EN

Table 15. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT16

(0x47)

5 RW NODE_FREE_EN

In RX mode, the enable bit that makes the

Node ID detection circuit independent.

0：Disable

1：Enable

4 RW NODE_ERR_MASK

The Node ID detection error will output a

PKT_ERR interrupt and simultaneously

synchronize the reset decoding circuit. The bit

controls whether the synchronous reset is

performed.

0: Permit the synchronous reset.

1: No permit the synchronous reset.

3:2 RW NODE_SIZE<1:0>

Node ID length：

0：1 byte

1：2 bytes

2：3 bytes

3：4 bytes

1:0 RW NODE_DET_MODE<1:0>

Node ID detection mode：

0：No detection

1：The TX mode sends the contents of the

NODE_VALUE; the RX mode only recognizes

the content of the NODE_VALUE.

2：The TX mode sends the contents of the

NODE_VALUE; the RX mode only recognizes

the content of the NODE_VALUE and all 0.

3：The TX mode sends the contents of the

NODE_VALUE; the RX mode only recognizes

the content of the NODE_VALUE, all 0 and all

1.

CUS_PKT17

(0x48)
7:0 RW NODE_VALUE<7:0>

32-bit Node ID value

CUS_PKT18 7:0 RW NODE_VALUE<15:8>

AN143

Rev 1.1 | Page 19/40

www.cmostek.com

(0x49)

CUS_PKT19

(0x4A)
7:0 RW NODE_VALUE<23:16>

CUS_PKT20

(0x4B)
7:0 RW NODE_VALUE<31:24>

 NODE_VALUE

NODE_SIZE <31:24> <23:16> <15:8> <7:0>

0 √

1 √ √

2 √ √ √

3 √ √ √ √

The tick in the table indicates the register to be filled in. For example, if the NODE_SIZE is set to 1, that is,

the length is 2 byte and the value is 0x5678, the user will fill the value in the two registers of

SYNC_VALUE<31:24> and SYNC_VALUE<23:16>. The MSB corresponds to the thirty-first bit. The LSB

corresponds to the sixteenth bit. That is filling 0x56 into SYNC_VALUE<31:24> and filling 0x78 into

SYNC_VALUE<23:16>.

The following will introduce, in different PKT_TYPE, how to set up PAYLOAD_LENG and NODE_SIZE,

how to confirm the DATA length inside Payload, how to explain the Length Byte meaning. Users can find the

parts they need to understand in the following table as needed:

Fixed packet format:

Figure 12. Fixed Length Packet Format

TX Mode RX Mode

Payload structure：

Node ID + Data, where Node ID does not exist, the TX and RX configurations are exactly the same.

For example：

PAYLOAD_LENG<10:0> = 11

NODE_SIZE<1:0> = 2

Then the total length of Payload is 11 + 1 = 12, the length of Node ID is 2 + 1 = 3. So, Data's length is 12 -

3 = 8 bytes. If Node ID does not exist, then the length of Data is 12.

AN143

Rev 1.1 | Page 20/40

www.cmostek.com

Variable packet format:

Condition 1: Node ID does not exist

Figure13. Variable Packet Format, Node ID does not exist

TX Mode RX Mode

Payload structure:

Length Byte + Data

Payload length:

1 + PAYLOAD_LENG<7:0>，where the content of PAYLOAD_LENG<7:0>

is equal to the content of Length Byte, which refers to the Data length

followed, and therefore can only fill 8 bits, the maximum value is 255. The

previous 1 represents the Length Byte itself is the length of the 1 byte.

For example：

PAYLOAD_LENG<7:0> = 11，

then the total length of Payload is 1 + 11 = 12, so the length of Data is 11.

Payload structure:

Length Byte + Data

Length Byte content

meaning：

Represents that the followed

Data length corresponds to

the TX configuration.

Condition 2: Node ID exists, and NODE_POSITION = 0 (Node ID is before Length Byte.)

Figure 14. Variable packet format, Node ID exists, Node ID is before Length Byte

TX Mode RX Mode

Payload structure:

Node ID + Length Byte + Data

Payload length:

(NODE_SIZE+1) + 1 + PAYLOAD_LENG<7:0>，

where the content of PAYLOAD_LENG<7:0> is

equal to the content of Length Byte, which refers to

the length of the Data followed, and therefore can

only fill 8 bits, the maximum value is 255. The

middle plus 1 means the Length Byte itself is the

length of the 1 byte.

Payload structure:

Node ID + Length Byte + Data

Length Byte content meaning：

Represents that the followed Data length

corresponds to the TX configuration.

AN143

Rev 1.1 | Page 21/40

www.cmostek.com

For example：

PAYLOAD_LENG<7:0> = 11，NODE_SIZE<1:0> =

2， then the total length of Payload is (2 + 1) + 1 +

11 = 15, so the length of Data is 11.

Condition 3: Node ID exists, and NODE_POSITION = 1 (Node ID is after Length Byte.)

Figure 15. Variable Packet Format, Node ID Exists, Node ID is after Length Byte

TX Mode RX Mode

Payload structure:

Length Byte + Node ID + Data

Payload length:

1 + PAYLOAD_LENG<7:0>，where the content of PAYLOAD_LENG<7:0>

is equal to the content of Length Byte, which refers to the following Node

ID plus the length of Data, so it can only fill 8 bits, the maximum value is

255. The previous 1 means the Length Byte itself is the length of the 1

byte.

For example：

PAYLOAD_LENG<7:0> = 11，NODE_SIZE<1:0> = 2，then the total length

of Payload is 1 + (2 + 1) + 8 = 12, so the length of Data is 8.

Payload structure:

Length Byte + Node ID +

Data

Length Byte content

meaning：

Represents that the followed

length of Node ID + Data

corresponds to the TX

configuration.

2.6 FEC Configuration

The corresponding RFPDK interface and parameters are as below:

Figure15. FEC RFPDK Interface

AN143

Rev 1.1 | Page 22/40

www.cmostek.com

Table 16. FEC Related Parameter

Register Bit RFPDK Parameter Register Bit

FEC FEC_EN

FEC_Type FEC_TYPE

Table 17. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT21

(0x4C)

7 RW FEC_TYPE

Polynomial selection of FEC (7,4) encoding

and decoding：

0: the polynomial is x^3+x+1

1: the polynomial is x^3+x^2+1

6 RW FEC_EN

FEC (7,4) encoding and decoding enable:

0: Disable

1: Enable

The main function of FEC is to correct an erroneous data in the packet, so it can reduce the packet error

rate.

2.7 CRC Configuration

The corresponding RFPDK interface and parameters are as below:

Figure 17. CRC RFPDK Interface

Table18. CRC Related Parameter

Register Bit RFPDK Parameter Register Bit

Crc Options CRC_TYPE<1:0>

Crc Seed CRC_SEED<15:0>

Crc Options 为 None 时，CRC_EN = 0，否则 CRC_EN =1 CRC_EN

Crc Range CRC_RANGE

Crc Swap CRC_BYTE_SWAP

Crc Bit Inv CRC_BIT_INV

Crc Bit Order CRC_BIT_ORDER

AN143

Rev 1.1 | Page 23/40

www.cmostek.com

Table 19. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT21

(0x4C)

5 RW CRC_BYTE_SWAP

CRC send-receive order:

0: First send and receive the high byte

1: First send and receive the low byte

4 RW CRC_BIT_INV

Whether or not CRC code is reversed.

0: CRC code is not reversed.

1: CRC code is reversed bit by bit.

3 RW CRC_RANGE

CRC calculation range:

0: the whole payload

1: only for data

2:1 RW CRC_TYPE<1:0>

CRC polynomial type:

0:CCITT-16

1:IBM-16

2:ITU-16(equals the reversed CCITT-16)

3: NA

0 RW CRC_EN

CRC enable

0：Disable

1：Enable

CUS_PKT22

(0x4D)
7:0 RW CRC_SEED<7:0>

Initial values of CRC polynomial

CUS_PKT23

(0x4E)
7:0 RW CRC_SEED<15:8>

CUS_PKT24

(0x4F)
7 RW CRC_BIT_ORDER

CRC Big-end and Little-end order

configuration:

0：CRC bytes send and receive in order from

bit15 to bit0.

1：CRC bytes send and receive in order from

bit0 to bit15.

The following explains in detail the principles of several configurations of CRC.

CRC_RANGE

This function is the codec checksum object of the specified CRC. It could be the whole Payload, or the

Data part.

AN143

Rev 1.1 | Page 24/40

www.cmostek.com

Figure 18. CRC Coding Range

CRC_BIT_INV

This function is to inverse every bit of CRC, which turns 0 into 1, and turns 1 into 0.

Figure 19. CRC_BIT_INV

CRC_BYTE_SWAP

This function is to swap the position of the two Byte, but not change the Bit order in each Byte.

Figure 20. CRC_BYTE_SWAP

CRC_BIT_ORDER

This function is to reverse the high and low order of the whole CRC. If the position of the two BYTE is

changed, it will be inverted according to the high and low order after the change.

Figure 21. CRC_BIT_ORDER

2.8 Codec Configuration

The corresponding RFPDK interface and parameters are as below:

AN143

Rev 1.1 | Page 25/40

www.cmostek.com

Figure 22. Codec RFPDK Interface

Table 20. Codec Related Parameter

Register Bit RFPDK Parameter Register Bit

Whitening WHITEN_EN

Whiten Type WHITEN_TYPE<1:0>

Whiten Seed Type WHITEN_SEED_TYPE

Whiten Seed WHITEN_SEED<8:0>

Manchester MANCH_EN

Manchester Type MANCH_TYPE

Table 21. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT24

(0x4F)

6 RW WHITEN_SEED<8>

The eighth bit of the seed of the whitening

codec polynomial.

When the whitening codec method is PN9, the

seed takes all 9bits. When it is PN7, the seed

takes the lower 7bits.

5 RW WHITEN_SEED_TYPE

The seed type that the whitening codec

polynomial is PN7:

0：Calculate PN7 seed in A7139 way

1：PN7 seed is the value defined for whiten

seed.

4:3 RW WHITEN_TYPE<1:0>

Whitening codec way:

0：PN9 CCITT Codec

1：PN9 IBM Codec

2：PN7 Codec

3：NA

2 RW WHITEN_EN
Whitening codec enable:

0: Disable whitening codec

AN143

Rev 1.1 | Page 26/40

www.cmostek.com

Register

Name
Bits R/W Bit Name Function Description

1: Enable whitening codec

1 RW MANCH_TYPE

Manchester codec way:

0：01 means 1; 10 means 0

1：10 means 1; 01 means 0

0 RW MANCH_EN

Manchester codec enable:

0：Disable

1：Enable

CUS_PKT25

(0x50)
7:0 RW WHITEN_SEED<7:0>

The 7:0 bit of the seed of the whitening codec

polynomial.

2.9 Tx Packet Specific Configuration

The corresponding RFPDK interface and parameters are as below:

Figure 23. TX Packet RFPDK Interface

Table 22. TX Packet Related Parameter

Register Bit RFPDK Parameter Register Bit

Tx Prefix Type TX_PREFIX_TYPE<1:0>

Tx Packet Number TX_PKT_NUM<7:0>

Tx Packet Gap TX_PKT_GAP<7:0>

Table 23. Register Located in Configuration Bank

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT26

(0x51)
1:0 RW TX_PREFIX_TYPE<1:0>

"TX Prefix" means that in Packet mode,

after entering the sending state, because

the FIFO data is not ready yet, PA has

already started sending, it is necessary to

define the content of the pre sending, which

can be defined as:

AN143

Rev 1.1 | Page 27/40

www.cmostek.com

Register

Name
Bits R/W Bit Name Function Description

0：Send 0

1：Send 1

2：Send Preamble

3：NA

CUS_PKT27

(0x52)
7:0 RW TX_PKT_NUM<7:0>

The packet number sent repeatedly each

time in TX mode:

0-255 means sending 1-256 packets.

CUS_PKT28

(0x53)
7:0 RW TX_PKT_GAP<7:0>

The gap between packets and packets

when sending repeatedly the packet in TX

mode,:

0-255 indicates the sending gap between

packets and packets is 1-256 Symbol

2.10 Direct Tx Mode

As the previous chapters, in the Tx mode, when DATA_MODE configured to Direct Mode, the Tx data can

be directly from the GPIO. The following is associated with Direct Mode register：

Register

Name
Bits R/W Bit Name Function Description

CUS_PKT1

(0x38)
1:0 RW DATA_MODE<1:0>

Data mode option：

0：Direct Mode（Default）

1：NA

2：Packet Mode

3：NA

CUS_TX1

(0x55)
2 RW TX_DIN_SOURCE

Tx_Data_In option：

0：TX Data from TX FIFO

1：TX Data from GPIO

CUS_IO_SEL

(0x65)

7:6 RW GPIO4_SEL<1:0>

GPIO4 option：

0：RST In

1：INT1

2：DOUT

3：DCLK（Tx / Rx）

5:4 RW GPIO3_SEL<1:0>

GPIO3 option：

0：CLKO

1：DOUT / DIN

2：INT2

3：DCLK（Tx / Rx）

3:2 RW GPIO2_SEL<1:0>

GPIO2 option：

0：INT1

1：INT2

2：DOUT / DIN

3：DCLK（Tx / Rx）

AN143

Rev 1.1 | Page 28/40

www.cmostek.com

1:0 RW GPIO1_SEL<1:0>

GPIO1 option：

0：DOUT / DIN

1：INT1

2：INT2

3：DCLK（Tx / Rx）

CUS_INT2_CTL

(0x67)
5 RW TX_DIN_INV

Tx data invert control（include FIFO mode）：

0：invert Tx data

1：non-invert Tx data

CUS_FIFO_CTL

(0x69)

7 RW TX_DIN_EN

DOUT / DIN Direction option：

0：Enable DOUT mode

1：Enable DIN mode

6:5 RW TX_DIN_SEL<1:0>

Tx Data source option：

0：GPIO1

1：GPIO2

2：GPIO3

3：Always“1”

User must be configured DATA_MODE to 0, and then set the TX_DIN_SOURCE to 1

The user must be configured these registers before GO_TX. And then sending GO_TX command,

Tx_Data should be control by the MCU_IO, which connect with the GPIO. It is important to note that in the

Direct mode, the data of data rate is controlled by MCU, should closely to the target.

In addition, user can use DCLK to secondary data synchronization, suggest MCU send data on the falling

edge of DCLK. When after tx, it can send GO_ * command to switch mode, it is important to note that in

general, after the chip receives the GO_ * command, it need 2-3 symbol time for PA_RAMP_DOWN after the

completion of the will switch to the target state.

3. GPIO and Interrupt

CMT2300A has 3 GPIO ports; each GPIO can be configured into different input or output. CMT2300A

has 2 interrupt ports and can be configured to the different GPIO output. The following will introduce each of

them.

3.1 GPIO Configuration

Here is the register associated with the GPIO configuration, in the configuration bank 1:

Table 24. GPIO Related Register

Register

Name
Bits R/W Bit Name Function Description

CUS_IO_SEL

(0x65)
5:4 RW GPIO3_SEL<1:0>

GPIO3 option：

0：CLKO

1：DOUT/DIN

2：INT2

AN143

Rev 1.1 | Page 29/40

www.cmostek.com

3：DCLK (TX/RX)

3:2 RW GPIO2_SEL<1:0>

GPIO2 option：

0：INT1

1：INT2

2：DOUT/DIN

3：DCLK (TX/RX)

1:0 RW GPIO1_SEL<1:0>

GPIO1 option：

0：DOUT/DIN

1：INT1

2：INT2

3：DCLK (TX/RX)

There are several points to note above: DCLK is the synchronous clock for MCU transmitting or receiving

data in direct mode. After entering the RX or TX status, it will automatically switch to the synchronization for

transmitting or receiving.

3.2 Interrupt Configuration and Mapping

CMT2300A has two interrupt ports, INT1 and INT2, which can be assigned to different GPIO. The

following are the register related with the interrupt.

Table 25. Control Bank 1

Register Name Bits R/W Bit Name Function Description

CUS_INT1_CTL

(0x66)

5 RW INT_POLAR

Interrupt output polarity option:

0：0 invalid, 1 valid

0：0 valid, 1 invalid

4:0 RW INT1_SEL<4:0>
INT1 mapping option. Please refer to the

interrupt mapping table below.

CUS_INT2_CTL

(0x67)
4:0 RW INT2_SEL<4:0>

INT2 mapping option. Please refer to the

interrupt mapping table below.

CUS_INT_EN

(0x68)

7 RW SL_TMO_EN

Sleep timeout interrupt enable

0：Disable

1：Enable

6 RW RX_TMO_EN

Receiving timeout interrupt enable

0：Disable

1：Enable

5 RW TX_DONE_EN

Transmitting done interrupt enable

0：Disable

1：Enable

4 RW PREAM_OK_EN

Preamble detection OK interrupt enable:

0：Disable

1：Enable

3 RW SYNC_OK_EN
Sync Word detection OK interrupt enable:

0：Disable

AN143

Rev 1.1 | Page 30/40

www.cmostek.com

1：Enable

2 RW NODE_OK_EN

Node ID detection OK interrupt enable:

0：Disable

1：Enable

1 RW CRC_OK_EN

CRC detection OK interrupt enable:

0：Disable

1：Enable

0 RW PKT_DONE_EN

Packet receiving done（Right or wrong）

interrupt enable:

0：Disable

1：Enable

CUS_INT_CLR1

(0x6A)

5 RW SL_TMO_FLG SL_TMO interrupt flag

4 RW RX_TMO_FLG RX_TMO interrupt flag

3 RW TX_DONE_FLG TX_DONE interrupt flag

2 RW TX_DONE_CLR

TX_DONE interrupt clear

0：No action

1：Clear

1 RW SL_TMO_CLR

SL_TMO interrupt clear

0：No action

1：Clear

0 RW RX_TMO_CLR

RX_TMO interrupt clear

0：No action

1：Clear

AN143

Rev 1.1 | Page 31/40

www.cmostek.com

Table 26. Control Bank 2

Register Name Bits R/W Bit Name Function Description

CUS_INT_CLR2

(0x6B)

5 RW LBD_CLR

LBD is valid（detected successfully the low

voltage）. Interrupt clear

0：No action

1：Clear

4 RW PREAM_OK_CLR

PREAM_OK interrupt clear

0：No action

1：Clear

3 RW SYNC_OK_CLR

SYNC_OK interrupt clear

0：No action

1：Clear

2 RW NODE_OK_CLR

NODE_OK interrupt clear

0：No action

1：Clear

1 RW CRC_OK_CLR

CRC_OK interrupt clear

0：No action

1：Clear

0 RW PKT_DONE_CLR

PKT_DONE interrupt clear

0：No action

1：Clear

CUS_INT_FLAG

(0x6D)

7 RW LBD_FLG
The interrupt flag LBD is valid（detected

successfully the low voltage）.

6 RW COL_ERR_FLG COL_ERR interrupt flag

5 RW PKT_ERR_FLG PKT_ERR interrupt flag

4 RW PREAM_OK_FLG PREAM_OK interrupt flag

3 RW SYNC_OK_FLG SYNC_OK interrupt flag

2 RW NODE_OK_FLG NODE_OK interrupt flag

1 RW CRC_OK_FLG CRC_OK interrupt flag

0 RW PKT_OK_FLG PKT_OK interrupt flag

The following is the interrupt mapping table. The mappings of INT1 and INT2 are the same. Take INT1 as

an example:

AN143

Rev 1.1 | Page 32/40

www.cmostek.com

Table 27. CMT2300A Interrupt Mapping Table

Name INT1_SEL Description Cleanup

Way

RX_ACTIVE 00000 Indicates the interrupt ready to enter RX and has entered

RX is 1 in the PLL correction and RX States, and it is 0 at

the rest.

Auto

TX_ACTIVE 00001 Indicates the interrupt ready to enter TX and has entered

TX is 1 in the PLL correction and TX States, and it is 0 at

the rest.

Auto

RSSI_VLD 00010 Indicates the interrupt whether RSSI is valid. Auto

PREAM_OK 00011 Indicates the interrupt successfully received Preamble. by MCU

SYNC_OK 00100 Indicates the interrupt successfully received Sync Word. by MCU

NODE_OK 00101 Indicates the interrupt successfully received Node ID. by MCU

CRC_OK 00110 Indicates the interrupt successfully received and passed

through the CRC check.

by MCU

PKT_OK 00111 Indicates the interrupt received a full packet. by MCU

SL_TMO 01000 Indicates the interrupt of the SLEEP counter timeout. by MCU

RX_TMO 01001 Indicates the interrupt of the RX counter timeout. by MCU

TX_DONE 01010 Indicates the interrupt of TX completion. by MCU

RX_FIFO_NMTY 01011 Indicates the non empty interrupt of RX FIFO Auto

RX_FIFO_TH 01100 Indicates the interrupt of RX FIFO unread content over

FIFO TH

Auto

RX_FIFO_FULL 01101 Indicates the interrupt of RX FIFO full Auto

RX_FIFO_WBYTE 01110 Indicates the interrupt RX FIFO writes a BYTE each time.

It is a pulse.

Auto

RX_FIFO_OVF 01111 Indicates the interrupt of the RX FIFO overflow Auto

TX_FIFO_NMTY 10000 Indicates the non empty interrupt of TX FIFO Auto

TX_FIFO_TH 10001 Indicates the interrupt of TX FIFO unread content over

FIFO TH.

Auto

TX_FIFO_FULL 10010 Indicates the interrupt of TX FIFO full. Auto

STATE_IS_STBY 10011 Indicates the interrupt the current state is STBY. Auto

STATE_IS_FS 10100 Indicates the interrupt the current state is RFS or TFS. Auto

STATE_IS_RX 10101 Indicates the interrupt the current state is RX. Auto

STATE_IS_TX 10110 Indicates the interrupt the current state is TX. Auto

LBD 10111 Indicates the interrupt the low voltage detection is valid

(VDD is below the set TH).

Auto

TRX_ACTIVE 11000 Indicates the interrupt ready to enter RX or TX and has

entered RX or TX is 1 in the PLL correction, RX and TX

States, and it is 0 at the rest.

Auto

PKT_DONE 11001 Indicates that the current packet has been received, and

there will be 4 cases:

1. Received completely the full packet.

by MCU

AN143

Rev 1.1 | Page 33/40

www.cmostek.com

Name INT1_SEL Description Cleanup

Way

2. Manchester decoding is error, decoding circuit will

automatically restart

3. NODE ID receiving is error, decoding circuit will

automatically restart.

4. Detect the signal conflict, the decoding circuit does

not automatically restart, waits for MCU processing.

Interrupt default is 1 valid. However, by setting the INT_POLAR register bit to 1, all interrupts will become

0 valid. Take INT1 as an example, the control and selection diagrams for all interrupt sources are drawn below.

For control and mapping, INT1 and INT2 are the same.

AN143

Rev 1.1 | Page 34/40

www.cmostek.com

Figure 24. CMT2300A INT1 Interrupt Mapping

For those interrupt sources that require MCU clearing, each one is equipped with an EN enable and a

CLR clear bit, except that LBD is special and has no EN enable bit. For example, the interrupt source of

SYNC_OK will only be generated when the bit SYNC_OK_EN is set to 1. When this interrupt occurs, it is

cleared only if the SYNC_OK_CLR is set to 1. When you set the CLR bit, MCU just needs to set it to 1, and

then does not need to set it back to 0, because in the chip, the CLR bit will be cleared automatically after the

corresponding interrupt is cleared.

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

D Q
0

1

PREAM_OK_FLG

PREAM_OK_CLR PREAM_OK_EN

D Q
0

1

SYNC_OK_FLG

SYNC_OK_CLR SYNC_OK_EN

D Q
0

1

NODE_OK_FLG

NODE_OK_CLR NODE_OK_EN

D Q
0

1

CRC_OK_FLG

CRC_OK_CLR CRC_OK_EN

D Q
0

1

PKT_OK_FLG

PKT_DONE_CLR PKT_DONE_EN

D Q
0

1

SL_TMO_FLG

SL_TMO_CLR SL_TMO_EN

D Q
0

1

RX_TMO_FLG

RX_TMO_CLR RX_TMO_EN

RX_FIFO_NMTY_FLG

RX_FIFO_TH_FLG

RX_FIFO_FULL_FLG

RX_FIFO_WBYTE_FLG

RX_FIFO_OVF_FLG

STATE_IS_STBY

01111

INT1

GPO4_SEL <1:0>

GPIO4

GPO3_SEL <1:0>

GPIO3

GPO2_SEL <1:0>

GPIO2

GPO1_SEL <1:0>

GPIO1

0

Preamble OK

Interrupt Source

0

Sycn Word OK

Interrupt Source

0

Node ID OK

Interrupt Source

0

CRC OK

Interrupt Source

0

Packet OK

Interrupt Source

0

Sleep Timeout

Interrupt Source

0

Receive Timeout

Interrupt Source

INT1_CTL <4:0>

RX_ACTIVE

TX_ACTIVE

RSSI_VLD_FLG

D Q
0

1

TX_DONE_FLG

TX_DONE_CLR TX_DONE_EN

0

Transmit Done

Interrupt Source

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

其它

TX_FIFO_NMTY_FLG

TX_FIFO_TH_FLG

TX_FIFO_FULL_FLG

STATE_IS_FS

STATE_IS_RX

STATE_IS_TX

RX_ACTIVE

D Q
0

1

PKT_DONE_FLG

PKT_DONE_CLR PKT_DONE_EN

0

Packet OK

Interrupt Source

TX_ACTIVE

Packet Err

Interrupt Source

Collision Err

Interrupt Source

0

0

1

INT_POLAR

D Q
0

1

LBD_CLR

0

LBD

Interrupt Source LBD_FLG

TRX_ACTIVE

AN143

Rev 1.1 | Page 35/40

www.cmostek.com

1. If there is a NODE ID in the packet, there may be an error in the NODE ID check. At this point, the

PKT_ERR_FLG flag will be set up and the chip will stop receiving the packet, and automatically restart

the decoder and wait for the next SYNC WORD coming. In this case, PKT_OK is not generated.

2. If you enable the Manchester decoding, there may be an error in decoding. At this point, the

PKT_ERR_FLG flag will be set up and the chip will stop receiving the packet, and automatically restart

the decoder and wait for the next SYNC WORD coming. In this case, PKT_OK is not generated.

3. If you enable the signal conflict detection (The following will introduce the specific usage), it is possible to

detect a signal conflict that results in errors in the contents of the received packet later. At this point, the

COL_ERR_FLG flag will be set up and the chip will continue to receive the packet until it is finished and

the decoder will not restart automatically. In this case, PKT_OK will still occur, but the received data is

wrong.

No matter what happened, we need to tell the external MCU, or the MCU will always wait for the interrupt,

which will cause the failure to interact with the chip. So, we will give the interrupt signal PKT_DONE =

PKT_OK | PKT_ERR_FLG | COL_ERR_FLG, that is no matter what happened, we will notify the MCU. After

the MCU received the interrupt, it can check the related 3 flag bits and know what happened, and then deal

with the follow-up.

Another approach is that MCU can only wait for PKT_OK and check CRC flag bit (if there is) , but be

careful with the SYNC_OK interrupt. For example, the first packet appears wrong with decoding, and the

decoder immediately receives the next packet again. For MCU, there will be two consecutive SYNC_OK

interrupts. If the MCU doesn't handle it well, it will be assumed that the second SYNC_OK interrupt is the

PKT_OK interrupt and that it will be handled incorrectly.

In short, using the codec interrupt will run into a variety of situations. Different users have the different

understanding. It is recommended that the program should be as simple as possible, but the stability is at the

top of the list, it is better to bring the timeout mechanism with itself. If the MCU fails to interact with the chip

(losing contact), a crash occurs.

The Cmt2300GPIO output interrupt configuration code is illustrated in Appendix 2.

AN143

Rev 1.1 | Page 36/40

www.cmostek.com

3.3 Antenna TX / RX Switching Control

The following are the registers that control the external antenna for TX/RX switching:

Table 28. TX/RX Switch Control Related Register

Register Name Bits R/W Bit Name Function Description

CUS_INT1_CTL

(0x66)

7 RW RF_SWT1_EN

Antenna switch signal enable 1:

0：Disable

1：Enable

At the same time, RF_SWT1_EN and

RF_SWT2_EN cannot be configured to be

valid.

6 RW RF_SWT2_EN

Antenna switch signal enable 2:

0：Disable

1：Enable

At the same time, RF_SWT2_EN and

RF_SWT1_EN cannot be configured to be

valid.

The chip can output a set of signals (two different) on the GPIO1 and GPIO2 to control the RX/TX

switching of the external antenna. . We can choose to output two sets of control signals with different timing

characteristics, which are respectively enabled by two enabling signals RF_SWT1_EN and RF_SWT2_EN:

1. When RF_SWT1_EN enables, GPIO1 will output RX_ACTIVE, and GPIO2 will output TX_ACTIVE.

2. When RF_SWT2_EN enables, GPIO1 will output RX_ACTIVE, and GPIO2 will output RX_ACTIVE

reversed, that is the complete difference.

Users need to note, either RF_SWT1_EN or RF_SWT2_EN is opened, another one cannot be opened,

meanwhile GPIO1_SEL and GPIO2_SEL will be invalid, that is the antenna switching control has the highest

priority.

Users can test the timing difference between the two control modes and decide which one to use

according to the actual situation.

AN143

Rev 1.1 | Page 37/40

www.cmostek.com

4. Document Modification Record

Table29. Document Modification Record Sheet

Version Chapter Modification descriptions Date

0.9 All Initial release 2017-08-11

1.1 Table 3 Change bit of CUS_PKT1 2019-03-15

1.1 Table 5
Change TX_FIFO_FULL_FLG description from

indicating FIFO not empty to FIFO full.
2019-03-15

1.1 Table 11 Change bit of SYNC_MAN_EN. 2019-03-15

1.1 Table 15
Change bit of NODE_ERR_MASK, NODE_SIZE<1:0>,

NODE_DET_MODE<1:0>
2019-03-15

AN143

Rev 1.1 | Page 38/40

www.cmostek.com

Appendix 1: Sample code FIFO read-write operation code examples

Sample code FIFO read enable operation sub function

/*! **

* @name Cmt2300_EnableReadFifo

* @desc Enable SPI to read the FIFO.

* ***/

void Cmt2300_EnableReadFifo(void)

{

 u8 tmp = Cmt2300_ReadReg(CMT2300_CUS_FIFO_CTL);

 tmp &= ~CMT2300_MASK_SPI_FIFO_RD_WR_SEL;

 tmp &= ~CMT2300_MASK_FIFO_RX_TX_SEL;

 Cmt2300_WriteReg(CMT2300_CUS_FIFO_CTL, tmp);

}

/*! **

* @name Cmt2300_EnableWriteFifo

* @desc Enable SPI to write the FIFO.

* ***/

void Cmt2300_EnableWriteFifo(void)

{

 u8 tmp = Cmt2300_ReadReg(CMT2300_CUS_FIFO_CTL);

 tmp |= CMT2300_MASK_SPI_FIFO_RD_WR_SEL;

 tmp |= CMT2300_MASK_FIFO_RX_TX_SEL;

 Cmt2300_WriteReg(CMT2300_CUS_FIFO_CTL, tmp);

}

Appendix 2: Sample code GPIO outputs interrupt configuration function examples

void RF_Config(void)

{

#ifdef ENABLE_ANTENNA_SWITCH

 /* If you enable antenna switch, GPIO1/GPIO2 will output RX_ACTIVE/TX_ACTIVE,

 and it can't output INT1/INT2 via GPIO1/GPIO2 */

 Cmt2300_EnableAntennaSwitch(0);

#else

 /* Config GPIOs */

 Cmt2300_ConfigGpio(

 CMT2300_GPIO1_SEL_INT1 | /* INT1 > GPIO1 */

 CMT2300_GPIO2_SEL_INT2 | /* INT2 > GPIO2 */

 CMT2300_GPIO3_SEL_DOUT/*DOUT>GPIO3*/

);

 /* Config interrupt */

 Cmt2300_ConfigInterrupt(

 CMT2300_INT_SEL_TX_DONE, /* Config INT1 */

AN143

Rev 1.1 | Page 39/40

www.cmostek.com

 CMT2300_INT_SEL_PKT_OK /* Config INT2 */

);

#endif

 /* Enable interrupt */

 Cmt2300_EnableInterrupt(

 CMT2300_MASK_TX_DONE_EN |

 CMT2300_MASK_PREAM_OK_EN |

 CMT2300_MASK_SYNC_OK_EN |

 CMT2300_MASK_NODE_OK_EN |

 CMT2300_MASK_CRC_OK_EN |

 CMT2300_MASK_PKT_DONE_EN

);

 Cmt2300_EnableLfosc(FALSE);

/* Use a single 64-byte FIFO for either Tx or Rx */

 //Cmt2300_EnableFifoMerge(TRUE);

 //Cmt2300_SetFifoThreshold(16);

 /* Go to sleep for configuration to take effect */

 Cmt2300_GoSleep();

}

AN143

Rev 1.1 | Page 40/40

www.cmostek.com

5. Contact Information

Wuxi CMOSTEK Microelectronics Co., Ltd. Shenzhen branch

Room 203, Honghai Building, Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

Zip Code： 518000

Tel： +86 - 755 - 83235017

Fax： +86 - 755 - 82761326

Sales： sales@cmostek.com

Technical support： support@cmostek.com

Website： www.cmostek.com

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for

inaccuracies and specifications within this document are subject to change without notice. The material contained herein is

the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior

written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support

devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of

CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

mailto:sales@cmostek.com
mailto:support@cmostek.com
http://www.cmostek.com/

